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Table II. ' 3C NMR Chemical Shifts of Salts la and Ib^ 

Cp: 
4 

Carbon la lb 

1 38.3 30.7 
2 23.9 20.0 
3 23.5 19.9 
4 30.7 26.1 
5 53.3 42.6 

a Spectra were determined on ca. 25% solutions in CDCl3. Data 
are presented in ppm downfield from internal Me4Si. 

entropy terms. While AS* for ylide 8 is more negative than 
AS* for salt 7 by 4.5 eu, AS* for ylide 4 is more positive than 
AS* for salt 1 by 9.1 eu. Finally, it has recently been shown 
that conversion of 1,3-bissulfonium salt 9 to the corresponding 
ylide decreases AG* for pyramidal inversion at sulfur by at 
least 5 kcal mol-1.12,13 

C6"5N+ + / 2 H 5 
S - C H , - S 

CH3 CH3 

? 

We are now engaged in studying the stereochemistry of the 
reaction of ylides 4a and 4b with various electrophiles. 
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MINDO/3 Study of the Addition of Singlet Oxygen 
(1AgO2) to 1,3-Butadiene 

Sir: 

The well-known1 7r-cycloaddition of singlet molecular 
oxygen (' Ag02,1) to conjugated dienes to form six-membered 

O2(
1Ag) + \_J <*>•»"•««> > < 1 3 

Figure 1. Heats of formation (kcal/mol) and dipole moments (D, in pa­
rentheses) of species involved in the reaction of' A8 O2 with 1,3-butadiene 
and of transition states involved in their interconversions. 

1.220/ 
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Figure 2. Geometries of transition states (bond lengths in A). 

cyclic peroxides bears an obvious resemblance to the Diels-
Alder reaction, and both processes were until recently thought 
to involve synchronous2 pericyclic mechanisms. However 
Mclver3 has shown that 7r-cycloadditions are unlikely to in­
volve symmetrical transition states and MINDO/34 studies5 

here have indeed shown that the transition states for several 
typical Diels-Alder reactions are very unsymmetrical,6 one 
of the new bonds being almost completely formed, the other 
hardly at all. Our MINDO/3 calculations9 for several reac­
tions of 1 with olefins have moreover indicated that these are 
two-step2 processes, involving peroxiranes or zwitterions as 
stable intermediates. We therefore felt it of interest to extend 
our MINDO/3 studies to the reaction of 1 with 1,3-butadiene 

Figure 1 shows the reactions we studied, using the techniques 
previously described.9 The calculated heats of formation and 
dipole moments of the various stable species and transition 
states are also indicated in Figure 1 while Figure 2 shows the 
structures calculated for the transition states. These results 
imply that the first step in the reaction of 1 with 2 is the for­
mation of a peroxirane which can exist as a cis (3c) or trans (3t) 
isomer. The activation energy for addition is 10.8 kcal/mol and 
the transition states (6c, 6t) are reactant-like in their geometric 
and electronic structures. The intermediate cw-peroxirane (3c) 
can rearrange easily (AE*, 11.9 kcal/mol) to the cyclic per­
oxide 5. 

The overall activation energy for formation of 5 by this 
two-step route is less by 9.2 kcal/mol than by concerted 1,4-
7r-cycloaddition of 1 to 2. This latter reaction could indeed be 
studied only by enforcing Cs symmetry. The corresponding 
"transition state" (11), while a stationary point on the potential 
surface, is not a true transition state because the force constant 
matrix has two negative eigenvalues (cf. ref 9 and 10). 

The intermediates, 3c and 3t, can also rearrange to vinyl-
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dioxetane (4) via three different isomeric transition states that 
still retain the peroxirane structure. The easiest route, via 8c, 
involves an activation energy of 34.1 kcal/mol, while reaction 
via the "open" transition state 9t involves an activation energy 
of 42.2 kcal/mol (see Figure 2). 

These results refer to single-determinant SCF calculations. 
Since the Diels-Alder reaction involves a biradicaloid" 
transition state and must consequently be treated with inclu­
sion of CIo,12 we repeated the calculations for the species shown 
in Figure 1 in this way. The decreases in energy were less than 
10 kcal/mol for all except 9t, implying that the species have 
little biradical character and that the values without CIo should 
be accepted.13 The same probably applies to 9t, but this is ir­
relevant in the present connection. The activation energy for 
rearrangement of 3t to 5 via 9t remains greater than that for 
rearrangement to 5, even when CIo is included. 

Our calculations therefore imply that the ir-cycloaddition 
of 1 to 2 is not only not synchronous but not even concerted, 
taking place in two steps via a stable intermediate peroxirane. 
This conclusion is of course subject to the uncertainties set by 
the limited accuracy of MINDO/3,14 and it is also true that 
our estimate of the heats of formation of 3c and 5 are probably 
too negative (see ref 9). Nevertheless we feel that our results 
provide quite strong support for the two-step mechanism of 
addition, which, it should be noted, is also consistent with the 
observed stereospecificity of the reactions of 1 with dienes.1 

In the two-step mechanism, stereochemistry could be lost only 
by rotation about either the exocyclic double bond or the CC 
bond in the peroxirane ring. Analogy shows that the activation 
energy for the former process must be at least 50 kcal/mol 
while that predicted by MINDO/3 for the latter is 27.9 kcal/ 
mol. Both are much greater than the predicted barrier to re­
arrangement of 3c to 5. 
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Detection of Chirality with the Chemical Ionization Mass 
Spectrometer. "Meso" Ions in the Gas Phase 

Sir: 

While the mass spectrometer, or any other achiral physical 
probe, is unable to distinguish between optical isomers in the 
solid or liquid state, the strong interaction often found between 
pairs of enantiomers may be detected with such tools. Thus, 
it is well known that the melting point, solubility, and vapor 
pressure of racemic compounds are considerably different from 
those of their optically pure components.1 As Zahorsky and 
Musso have shown,2 if one of the enantiomers is isotopically 
labeled its preferential vaporization relative to the racemate 
is disclosed in its electron ionization mass spectrum by a change 
in the relative abundance of the two molecular ions with time. 
This same effect can be observed using chemical ionization 
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Figure 1. DimethyW6 D-tartrate (10%) and dimethyl-do L-tartrate (90%) 
scanned sequentially, a through c. 
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